R&S®SPECTRUM RIDER FPH HANDHELD SPECTRUM ANALYZER **Specifications** Data Sheet ROHDE&SCHWARZ Make ideas real ### **CONTENTS** | С | Definitions | 3 | |---|--|----| | S | Specifications | 4 | | | Frequency | 4 | | | Sweep time | 4 | | | Bandwidths | 5 | | | Level | 5 | | | Trigger functions | 7 | | | Inputs and outputs | 8 | | | General data | 8 | | | Equivalence of specifications for different R&S®FPH part numbers | 9 | | | R&S®FPH-B100 type N RF input connector for model .26 | g | | | R&S®FPH-K7 modulation analysis | 10 | | | R&S®FPH-K19 channel power meter | 12 | | | R&S®FPH-K29 pulse measurements with power sensor | 12 | | | R&S®FPH-K43 receiver mode and channel scan measurement application | 13 | | | R&S®FPH-K57 advanced gated trigger measurement | 13 | | | R&S®HA-Z350 log-periodic OEM antenna | 13 | | | R&S®FSH-Z14 directional power sensor | 14 | | | R&S®FSH-Z44 directional power sensor | 16 | | c | Ordering information | 18 | | | Options | 18 | | | Extras | 18 | | | Antennas and antenna accessories | 19 | | | R&S®NRP-Zxx power sensors supported by the R&S®Spectrum Rider FPH | 20 | | | Optical power sensors and accessories | 20 | | | Service options | 21 | ### **Definitions** #### Genera Product data applies under the following conditions: - Three hours storage at ambient temperature followed by 30 minutes warm-up operation - Specified environmental conditions met - · Recommended calibration interval adhered to - All internal automatic adjustments performed, if applicable #### Specifications with limits Represent warranted product performance by means of a range of values for the specified parameter. These specifications are marked with limiting symbols such as $\langle , \leq , > , \geq , \pm \rangle$, or descriptions such as maximum, limit of, minimum. Compliance is ensured by testing or is derived from the design. Test limits are narrowed by guard bands to take into account measurement uncertainties, drift and aging, if applicable. #### Non-traceable specifications with limits (n. trc.) Represent product performance that is specified and tested as described under "Specifications with limits" above. However, product performance in this case cannot be warranted due to the lack of measuring equipment traceable to national metrology standards. In this case, measurements are referenced to standards used in the Rohde & Schwarz laboratories. #### Specifications without limits Represent warranted product performance for the specified parameter. These specifications are not specially marked and represent values with no or negligible deviations from the given value (e.g. dimensions or resolution of a setting parameter). Compliance is ensured by design. #### Typical data (typ.) Characterizes product performance by means of representative information for the given parameter. When marked with <, > or as a range, it represents the performance met by approximately 80 % of the instruments at production time. Otherwise, it represents the mean value. #### Nominal values (nom.) Characterize product performance by means of a representative value for the given parameter (e.g. nominal impedance). In contrast to typical data, a statistical evaluation does not take place and the parameter is not tested during production. #### Measured values (meas.) Characterize expected product performance by means of measurement results gained from individual samples. #### Uncertainties Represent limits of measurement uncertainty for a given measurand. Uncertainty is defined with a coverage factor of 2 and has been calculated in line with the rules of the Guide to the Expression of Uncertainty in Measurement (GUM), taking into account environmental conditions, aging, wear and tear. Device settings and GUI parameters are designated with the format "parameter: value". Non-traceable specifications with limits, typical data as well as nominal and measured values are not warranted by Rohde & Schwarz. In line with the 3GPP/3GPP2 standard, chip rates are specified in million chips per second (Mcps), whereas bit rates and symbol rates are specified in billion bits per second (Gbps), million bits per second (Mbps), thousand bits per second (kbps), million symbols per second (Msps) or thousand symbols per second (ksps), and sample rates are specified in million samples per second (Msample/s). Gbps, Mcps, Mbps, Msps, ksps and Msample/s are not SI units. # **Specifications** # **Frequency** | Frequency range | R&S®Spectrum Rider FPH model .02 | 5 kHz to 2 GHz | |----------------------|--------------------------------------|---------------------------| | | with R&S®FPH-B3 option installed | 5 kHz to 3 GHz | | | with R&S®FPH-B3 and R&S®FPH-B4 | 5 kHz to 4 GHz | | | options installed | | | | R&S®Spectrum Rider FPH model .06 | 5 kHz to 6 GHz | | | with R&S® FPH-B8 option installed | 5 kHz to 8 GHz | | | R&S®Spectrum Rider FPH model .13 | 5 kHz to 13.6 GHz | | | with R&S® FPH-B20 option installed | 5 kHz to 20 GHz | | | R&S®Spectrum Rider FPH model .26 | 5 kHz to 26.5 GHz | | | with R&S® FPH-B31 option installed | 5 kHz to 31 GHz | | | R&S®Spectrum Rider FPH | from 5 kHz down to 100 Hz | | | models .06/.13/.26 with R&S® FPH-B29 | | | | option installed ¹ | | | Frequency resolution | | 1 Hz | | Reference frequency, internal | | | |---|----------------|---| | Aging per year | | 1 · 10 ⁻⁶ | | Temperature drift | 0 °C to +50 °C | 1 · 10 ⁻⁶ | | Achievable initial calibration accuracy | | 5 · 10 ⁻⁷ | | Total reference uncertainty | | (time since last adjustment · aging rate) + | | - | | temperature drift + calibration accuracy | | Frequency readout | | | |-----------------------------------|-------------|---| | Marker resolution | | 1 Hz | | Uncertainty | | ±(marker frequency · reference
uncertainty + 10 % · resolution bandwidth
+ ½ (span / (sweep points − 1) + 1 Hz) | | Number of sweep (trace) points | | 711 | | Marker tuning frequency step size | | span / 710 | | Frequency counter resolution | | 0.1 Hz | | Count uncertainty | SNR > 25 dB | ±(frequency · reference uncertainty + ½ (last digit)) | | Frequency span | | 0 Hz,
10 Hz to 2/3/4/6/8/13.6/20/26.5/31 GHz | | Span uncertainty | | 1 % (nom.) | | Spectral purity SSB phase noise | | f = 500 MHz | |---------------------------------|---------|---| | Carrier offset | 30 kHz | < -88 dBc (1 Hz), -95 dBc (1 Hz) (typ.) | | | 100 kHz | < -98 dBc (1 Hz), -105 dBc (1 Hz) (typ.) | | | 1 MHz | < -118 dBc (1 Hz), -125 dBc (1 Hz) (typ.) | # Sweep time | Sweep time | span = 0 Hz | 1 ms to 1000 s | |-------------|------------------------|-----------------------------------| | | 10 Hz ≤ span ≤ 600 MHz | 20 ms to 1000 s | | | span > 600 MHz | 20 ms · span / 1600 MHz to 1000 s | | Uncertainty | span = 0 Hz | 1 % (nom.) | | | span ≥ 10 Hz | 3 % (nom.) | $^{^1}$ $\,$ For serial number \geq 103100. Not applicable to R&S $^{\!0}$ Spectrum Rider FPH model .02. # **Bandwidths** | Resolution bandwidths | | | |------------------------|-----------------------|------------------------------------| | Range | -3 dB bandwidths | 1 Hz to 3 MHz in 1/3 sequence | | Bandwidth accuracy | 1 Hz ≤ RBW ≤ 300 kHz | < 5 % (nom.) | | | 300 kHz < RBW ≤ 1 MHz | < 10 % (nom.) | | Selectivity 60 dB:3 dB | | < 5 (nom.) (Gaussian type filters) | | Video filters | | | | Range | -3 dB bandwidths | 1 Hz to 3 MHz in 1/3 sequence | ### Level | Display range | | displayed noise floor to +30 dBm | | |---|--|--|--| | Maximum rated input level with RF atte | anuation > 10 dB | displayed hoise hour to 430 doin | | | DC voltage | The state of s |
50 V | | | CW RF power | R&S®Spectrum Rider FPH model .02 | 33 dBm (= 2 W) | | | CW RF power | R&S®Spectrum Rider FPH model .02 | 27 dBm (= 2.5 W) | | | | model .06/.13/.26 | 27 dbiii (= 0.5 vv) | | | Peak RF power (duration < 3 s) | R&S®Spectrum Rider FPH model .02 | 36 dBm (= 4 W) | | | reak Kr power (duration < 3.5) | R&S®Spectrum Rider FPH | 30 dBm (= 4 W) | | | | model .06/.13/.26 | 30 dBill (= 1 W) | | | Maximum rated input level with RF atte | | | | | DC voltage | | 50 V | | | CW RF power | R&S®Spectrum Rider FPH model .02 | 20 dBm (= 100 mW) | | | on a power | R&S®Spectrum Rider FPH | 20 dBm (= 100 mW) | | | | model .06/.13/.26 | 20 dBiii (= 100 iiivv) | | | Peak RF power (duration < 3 s) | R&S®Spectrum Rider FPH model .02 | 23 dBm (= 200 mW) | | | Tour tri ponor (adianon 100) | R&S®Spectrum Rider FPH | 23 dBm (= 200 mW) | | | | model .06/.13/.26 | 20 dBm (= 200 mvv) | | | Intermodulation | 1110001.1001.101.120 | | | | Third-order intercept (TOI) | intermodulation-free dynamic range, sign | nal level –20 dBm (both). | | | ······································ | RF attenuation = 0 dB, RF preamplifier = | | | | | R&S®Spectrum Rider FPH model .02 | | | | | f = 1 GHz | +7 dBm (meas.) | | | | f = 2.4 GHz | +10 dBm (meas.) | | | | R&S®Spectrum Rider FPH models .06/.1 | | | | | f = 1 GHz | +7 dBm (meas.) | | | | f = 4.5 GHz | +8 dBm (meas.) | | | | f = 9.5 GHz | +10 dBm (meas.) | | | | f = 12 GHz | +9 dBm (meas.) | | | | f = 22 GHz | +8 dBm (meas.) | | | | f = 26.5 GHz | +10 dBm (meas.) | | | Second-harmonic intercept (SHI) | | RF attenuation = 0 dB, RF preamplifier = off, signal level = -40 dBm | | | , | R&S®Spectrum Rider FPH model .02 | | | | | f _{in} = 20 MHz to 1.5 GHz | -60 dBc (nom.) | | | | f _{in} = 1.5 GHz to 2 GHz | -80 dBc (nom.) | | | | R&S®Spectrum Rider FPH models .06/.1 | | | | | f _{in} = 20 MHz to 1.5 GHz | -60 dBc (nom.) | | | | f _{in} = 1.5 GHz to 4 GHz | -90 dBc (nom.) | | | | f _{in} = 4 GHz to 10 GHz | -90 dBc (nom.) | | | | f _{in} = 10 GHz to 14 GHz | -90 dBc (nom.) | | | | f _{in} = 14 GHz to 15.4 GHz | -85 dBc (nom.) | | | Displayed average noise level (DANL) | 0 dB RF attenuation, termination 50 Ω , RBW = 1 kHz, VBW = 10 Hz, | | | | Diopiayou avorago noiso isvoi (Dr. 112) | sample detector, log scaling, normalized to 1 Hz | | | | | R&S®Spectrum Rider FPH model .02 | | | | | preamplifier = off | | | | | 1 MHz to 10 MHz | < -135 dBm, -142 dBm (typ.) | | | | 10 MHz to 1 GHz | < -142 dBm, -146 dBm (typ.) | | | | 1 GHz to 4 GHz | < -142 dBm, -144 dBm (typ.) | | | | preamplifier = on | , i io doin, i i i doin (typ.) | | | | 1 MHz to 10 MHz | < -150 dBm, -160 dBm (typ.) | | | | 10 MHz to 3 GHz | < -158 dBm, -163 dBm (typ.) | | | | 3 GHz to 4 GHz | < -156 dBm, -161 dBm (typ.) | | | | R&S®Spectrum Rider FPH models .06/.1 | (71 / | | | | preamplifier = off | | | | | 1 MHz to 10 MHz | < -122 dBm, -130 dBm (typ.) | | | | 10 MHz to 25 MHz | < –130 dBm, –135 dBm (typ.) | | | | TO IVITIZ TO 20 IVITIZ | ¬ 100 dom, − 100 dom (typ.) | | | 25 MHz to 1 GHz | < -140 dBm, -145 dBm (typ.) | |-------------------|-----------------------------| | 1 GHz to 4 GHz | < -135 dBm, -140 dBm (typ.) | | 4 GHz to 8 GHz | < -135 dBm, -140 dBm (typ.) | | 8 GHz to 19 GHz | < -135 dBm, -138 dBm (typ.) | | 19 GHz to 20 GHz | < -130 dBm, -138 dBm (typ.) | | 20 GHz to 27 GHz | < -130 dBm, -138 dBm (typ.) | | 27 GHz to 29 GHz | < -125 dBm, -130 dBm (typ.) | | 29 GHz to 31 GHz | < -120 dBm, -123 dBm (typ.) | | preamplifier = on | | | 1 MHz to 20 MHz | 1 MHz to 20 MHz | | 20 MHz to 1 GHz | 20 MHz to 1 GHz | | 1 GHz to 3 GHz | 1 GHz to 3 GHz | | 3 GHz to 4 GHz | 3 GHz to 4 GHz | | 4 GHz to 4.5 GHz | 4 GHz to 4.5 GHz | | 4.5 GHz to 8 GHz | 4.5 GHz to 8 GHz | | 8 GHz to 20 GHz | 8 GHz to 20 GHz | | 20 GHz to 27 GHz | 20 GHz to 27 GHz | | 27 GHz to 29 GHz | 27 GHz to 29 GHz | | 29 GHz to 31 GHz | 29 GHz to 31 GHz | | 27 GHz to 29 GHz | 27 GHz to 29 GHz | | Immunity to interference | | | |---|--|-------------------| | Image frequencies | R&S®Spectrum Rider FPH model .02 | | | | f _{in} – 2 · 30.15 MHz | < -70 dBc (nom.) | | | f _{in} – 2 · 830.15 MHz | < -70 dBc (nom.) | | | f < 3 GHz, f _{in} – 2 · 830.15 MHz | < -70 dBc (nom.) | | | f < 3 GHz, f _{in} – 2 · 4042.65 MHz | -60 dBc (nom.) | | | f ≥ 3 GHz, f _{in} + 2 · 830.15 MHz | -60 dBc (nom.) | | | R&S®Spectrum Rider FPH model .06/.13/.2 | | | | f _{in} – 2 · 30.15 MHz | < -70 dBc (nom.) | | | f _{in} – 2 · 830.15 MHz | < -70 dBc (nom.) | | | f < 4 GHz, f _{in} – 2 · 830.15 MHz | < -70 dBc (nom.) | | | f < 4 GHz, f _{in} + 2 · 5582.35 MHz | < -50 dBc (nom.) | | | f < 4 GHz, f _{in} + 2 · 7230.15 MHz | < -50 dBc (nom.) | | | 4 GHz ≤ f < 8 GHz. | < –70 dBc (nom.) | | | f _{in} – 2 · 830.15 MHz | 1 10 020 (1.0111) | | | 8 GHz ≤ f < 20 GHz, | < -70 dBc (nom.) | | | f _{in} – 2 · 830.15 MHz | (, | | | 8 GHz ≤ f < 20 GHz, | < -70 dBc (nom.) | | | f _{in} + 2 · 4030.15 MHz | | | | 8 GHz ≤ f < 20 GHz, | < -70 dBc (nom.) | | | f _{in} + 2 · 5582.35 MHz | , | | | 8 GHz ≤ f < 20 GHz, | < -70 dBc (nom.) | | | f _{in} + 2 · 7230.15 MHz | , , | | | 20 GHz ≤ f < 26.5GHz, | < -40 dBc (nom.) | | | f _{in} – 2 · 4030.15 MHz | , , | | | 26.5 GHz ≤ f < 28.5 GHz, | < -60 dBc (nom.) | | | f _{in} – 2 · 7230.15 MHz | , | | Intermediate frequencies | R&S®Spectrum Rider FPH model .02 | | | | 30.15 MHz, 830.15 MHz, 4042.65 MHz | < -60 dBc (nom.) | | | R&S®Spectrum Rider FPH models .06/.13/.26 | | | | 30.15 MHz, 830.15 MHz, 4030.15 MHz | < -60 dBc (nom.) | | | 5582.35 MHz | < -50 dBc (nom.) | | | 7230.15 MHz | < -40 dBc (nom.) | | Other interfering signals, | R&S®Spectrum Rider FPH model .02 | | | signal level – RF attenuation < –30 dBm | f ≤ 3 GHz, spurious at | < -60 dBc (nom.) | | - G | f _{in} – 2021.325 MHz | , | | | R&S®Spectrum Rider FPH models .06/.13/.26 | | | | f < 4 GHz, spurious at | < -60 dBc (nom.) | | | f _{in} + 2015.075 MHz | , , | | | 4 GHz ≤ f < 8 GHz, | < -60 dBc (nom.) | | | f _{in} – 415.075 MHz | | | | 8 GHz ≤ f < 20 GHz, | < -60 dBc (nom.) | | | f _{in} + 2015.075 MHz | , , | | | 8 GHz ≤ f < 20 GHz, | < -60 dBc (nom.) | | | f _{in} + 2791.175 MHz | | | | 8 GHz ≤ f < 20 GHz, | < -60 dBc (nom.) | |---|--|--| | | f _{in} + 3615.075 MHz | | | | 20 GHz ≤ f < 26.5 GHz, | < -60 dBc (nom.) | | | f _{in} – 2015.075 MHz | | | | 26.5 GHz ≤ f < 28.5 GHz, | < -60 dBc (nom.) | | | f _{in} – 3615.075 MHz | | | Other interfering signals, related to local | f = receive frequency | | | oscillators | R&S®Spectrum Rider FPH model .02 | | | | Δf ≥ 300 kHz | < -60 dBc (nom.) | | | R&S®Spectrum Rider FPH models .06/.13/.26 | | | | Δf ≥ 300 kHz, Δf ≤ 1600 MHz | < -60 dBc (nom.) except otherwise stated | | | $\Delta f \le -422.5 \text{ MHz},$ | < -35 dBc (nom.) | | | $21440 \text{ MHz} \le f_{in} < 23400 \text{ MHz}$ | | | | Δf ≥ 1115 MHz, | < -40 dBc (nom.) | | | $23400 \text{ MHz} \le f_{in} < 24400 \text{ MHz}$ | | | Residual spurious response | input matched with 50 Ω, | < -90 dBm (nom.) | | | without input signal, RBW ≤ 30 kHz, | | | | f ≥ 3 MHz, RF attenuation = 0 dB | | | Level display | | | |--|--|---| | Logarithmic level axis | | 1/2/3/5/10/20/30/50/100/120/150 dB,
10 divisions | | Linear level axis | | 0 % to 100 %, 10 divisions | | Number of traces | | 2 | | Trace detectors | | max. peak, min. peak, auto peak, sample, RMS | | Trace functions | | clear/write, max. hold, min. hold, average, view | | Setting range of reference level | | -130 dBm to +30 dBm | | Units of level axis | | dBm, dBmV, dBµV, V, W | | Level measurement uncertainty | | • | | Absolute level uncertainty at 100 MHz | in the temperature range of +20 °C to +30 °C | < 0.3 dB | | | in the temperature range of +20 °C to | +30 °C | | Frequency response ² | 100 Hz ≤ f < 5 kHz | < 3.0 dB (nom.) (only with R&S® FPH-B29 option installed, preamplifier off and attenuator settings ≤ 15 dB) | | | 5 kHz ≤ f < 10 MHz | < 1.5 dB (nom.) | | | 10 MHz ≤ f < 8 GHz | < 1 dB | | | 8 GHz ≤ f < 20 GHz | < 1.5 dB | | | 20 GHz ≤ f ≤ 31 GHz | < 2 dB | | Attenuator uncertainty | | < 0.3 dB | | Uncertainty of reference level setting | | < 0.1 dB (nom.) | | Display nonlinearity | SNR > 16 dB, 0 dB to -50 dB, logarithmic level display | < 0.3 dB | | Bandwidth switching uncertainty | reference: RBW = 10 kHz | < 0.1 dB (nom.) | | Total measurement uncertainty | 95 % confidence level, +20 °C to +30 SNR > 16 dB, 0 dB to -50 dB below r | | | | 10 MHz ≤ f ≤ 31 GHz | < 1.25 dB, 0.5 dB (typ.) | | | | | # **Trigger functions** | Trigger | | | |----------------------------------|-----------------------|-------------------------------------| | Trigger source | | free run, video, external | | External trigger level threshold | low → high transition | 2.4 V | | | high → low transition | 0.7 V | | | maximum | 3.0 V | | Gated Trigger | | | | Gate delay | | 1 μs to 100 s, min. resolution 1 μs | | | | (or 1 % of delay) | | Gate length | | 1 μs to 100 s, min. resolution 1 μs | | | | (or 1 % of gate length) | ² For specifications with R&S®FPH-B100 option installed, see section "R&S®FPH-B100 N type RF input connector for model .26". # Inputs and outputs | RF input | | | |--------------------------------------|--|---------------------------------------| | Impedance | | 50 Ω (nom.) | | Connector | R&S®Spectrum Rider FPH
models .02/.06/.13 | type N, female | | | R&S®Spectrum Rider FPH model .26 | PC 3.5 mm male | | VSWR ² | R&S®Spectrum Rider FPH model .02 | | | | 100 kHz ≤ f ≤ 1 GHz | < 1.5 (nom.) | | | 1 GHz < f ≤ 4 GHz | < 2 (nom.) | | | R&S®Spectrum Rider FPH models .06/.1 | 3/.26 | | | 100
kHz ≤ f ≤ 100 MHz | < 2 (nom.) | | | 100 MHz ≤ f ≤ 1 GHz | < 1.5 (nom.) | | | 1 GHz < f ≤ 31 GHz | < 2 (nom.) | | Input attenuator | RF input only | 0 dB to 40 dB in 5 dB steps | | AF output | | | | AF demodulation types | | AM and FM | | Connector | | 3.5 mm mini jack | | Output impedance | | 32 Ω (nom.) | | Voltage (open circuit) | | adjustable from 0 V to > 100 mV (RMS) | | External reference, external trigger | <u>, </u> | | | Connector | | BNC, 50 Ω | | Mode | | external reference, external trigger | | External reference | required level | 0 dBm | | | frequency | 10 MHz | | External trigger threshold | low → high transition | 2.4 V | | | high → low transition | 0.7 V | ### **General data** | Manual operation | | | |-----------------------|--|--| | Languages | | Chinese, Chinese Traditional, English,
French, German, Italian, Hungarian,
Japanese, Korean, Portuguese, Russian,
Spanish | | Remote control | | | | Command set | | SCPI 1997.0 | | LAN interface | | 10/100BASE-T, RJ-45 | | USB | | mini B plug, version 2.0 | | Display | | | | Resolution | | WVGA, 800 x 480 pixel | | Audio | | | | Speaker | | internal, external headphone supported | | USB interface | | type A plug, version 2.0 | | | number of interfaces | 2 | | Mass memory | not supplied | USB flash drive, USB version 1.1 or 2.0, size ≤ 32 Gbyte | | 5 | | micro SD card, size ≤ 32 Gbyte | | Data storage | internal | > 160 instrument settings and traces | | | on USB stick or micro SD card, ≥ 1 Gbyte | > 10000 instrument settings and traces | | Temperature | operating temperature range | -10 °C to +55 °C | | | storage temperature range | -40 °C to +70 °C | | Climatic loading | battery charging mode relative humidity | 0 °C to +40 °C
+25/+55 °C at 95 % relative humidity,
in line with EN 60068-2-30 | | | protection class | IP51 | | Altitude | operating with battery | 15 000 m (49 210 ft) | | | operating with AC to DC adapter | 3000 m (9840 ft) | | Mechanical resistance | , | | | Vibration | sinusoidal | in line with EN 60068-2-6,
MIL-PRF-28800F class 2 | | | random | in line with EN 60068-2-64,
MIL-PRF-28800F class 2 | | Shock | | 40 g shock spectrum,
in line with MIL-STD-810E, method 516.4
procedure 1, MIL-PRF-28800F | | Power supply | | | |----------------------------------|--|---| | R&S®HA-Z301 AC power supply | input specifications | 100 V to 240 V AC, 50 Hz/60 Hz, | | | | 1.0 A to 0.5 A | | | output specifications | 15 V, 2.67 A, max. 40 W | | | operating temperature range | -30 °C to +60 °C | | | storage temperature range | -40 °C to +85 °C | | | test marks | CE, UL, PSE, TUV | | External DC voltage | | 14.65 V to 15.45 V | | Battery | | lithium-ion battery | | Capacity | R&S®HA-Z306 | 72 Wh | | Voltage | | 11.25 V (nom.) | | Operating time with new, | R&S®HA-Z306 | | | fully charged battery | model .02 | 8 h | | | model .06 | 7 h | | | models .13/.26 | 6 h | | Charging time | instrument switched off or charge with | 3.5 h | | | R&S®HA-Z303 battery charger | | | | instrument switched on | 4 h | | Life time | charging cycles | > 80 % or more of its initial capacity after | | | | 300 charge/discharge | | Power consumption | model .02 | 8 W (meas.) | | | model .06 | 10 W (meas.) | | | models .13/.26 | 12 W (meas.) | | Safety | | IEC 61010-1, EN 61010-1, UL 61010-1 | | | | (Third Edition), | | | | CAN/CSA-C22.2 No. 61010-1-12 | | Test mark | | VDE, CSA, CSA-NRTL | | EMC | in line with European EMC Directive | EN 61326-1 class B (emission) | | | 2004/108/EC | CISPR 11/EN 55011/group 1 | | | | class B (emission) | | | | • EN 61326-1 table 2 | | | | (immunity, industrial) | | Dimensions | $W \times H \times D$ | 202 mm × 294 mm × 76 mm | | | | $(8.0 \text{ in} \times 11.6 \text{ in} \times 3 \text{ in})$ | | Weight | | 2.5 kg (5.5 lb) | | Recommended calibration interval | | 1 year | ### Equivalence of specifications for different R&S®FPH part numbers - The specifications for part number 1321.1111.02 are equivalent to part number 1321.1111.52 and 1321.1111P01. - The specifications for part number 1321.1111.06 are equivalent to part number 1321.1111.56 and 1321.1111P04. - The specifications for part number 1321.1111.13 are equivalent to part number 1321.1111.63 and 1321.1111P06. - The specifications for part number 1321.1111.26 are equivalent to part number 1321.1111.76 and 1321.1111P08. ### R&S®FPH-B100 type N RF input connector for model .26 | Frequency range | R&S®Spectrum Rider FPH model .26 wi | th 5 kHz to 26.5 GHz | |--------------------|---|----------------------| | | R&S® FPH-B100 option (R&S®FPH-B31 | | | | option is not available in combination wi | th | | | R&S®FPH-B100 option) | | | Frequency response | in the temperature range of +20 °C to +3 | 30 °C | | | 5 kHz ≤ f < 10 MHz | < 1.5 dB (nom.) | | | 10 MHz ≤ f < 8 GHz | < 1 dB | | | 8 GHz ≤ f < 20 GHz | < 2 dB | | | 20 GHz ≤ f ≤ 26.5 GHz | < 2.5 dB | | VSWR | 100 kHz ≤ f ≤ 100 MHz | < 2 (nom.) | | | 100 MHz < f ≤ 1 GHz | < 1.5 (nom.) | | | 1 GHz < f ≤ 15.7 GHz | < 2 (nom.) | | | 15.7 GHz < f ≤ 26.5 GHz | < 2.7 (nom.) | ### R&S®FPH-K7 modulation analysis | Measurement of analog modulation s | gnals (AM, FM) | | |------------------------------------|--|---| | Center frequency | R&S®Spectrum Rider FPH model .02 | 500 KHz to 2 GHz | | | with R&S®FPH-B3 option installed | 500 KHz to 3 GHz | | | with R&S®FPH-B3 and R&S®FPH-B4 options installed | 500 KHz to 4 GHz | | | R&S®Spectrum Rider FPH model .06 | 500 KHz to 6 GHz | | | with R&S®FPH-B8 option installed | 500 KHz to 8 GHz | | | R&S®Spectrum Rider FPH model .13 | 500 KHz to 13.6 GHz | | | with R&S®FPH-B20 option installed | 500 KHz to 20 GHz | | | R&S®Spectrum Rider FPH model .26 | 500 KHz to 26.5 GHz | | | with R&S®FPH-B31 option installed | 500 KHz to 31 GHz | | Demodulation bandwidth | | 2 MHz, 1 MHz, 500 kHz, 300 kHz, | | | | 200 kHz, 100 kHz, 50 kHz, 30 kHz, | | | | 20 kHz, 10 kHz (nom.) | | Bandwidth accuracy | | < ±5% (nom.) | | Display | AM | carrier power, carrier frequency offset,
AM modulation depth, modulation
frequency, THD, SINAD, SNR | | | FM | carrier power, carrier frequency offset,
FM deviation, modulation frequency, THD,
SINAD, SNR | | Carrier power | | | |--|-------------------------------|--| | Carrier power measurement accuracy add 0.2 dB, see section | | | | | level measurement uncertainty | | | Display resolution | 0.1 dB | | | AF (modulation frequency) 3 | | | |-----------------------------|--|----------------------------------| | Range | AM | 20 Hz to 100 kHz (nom.) | | | FM | 20 Hz to 200 kHz (nom.) | | Resolution | | 1 Hz | | Measurement uncertainty | 1 kHz ≤ AF ≤ 200 kHz | ±(1 % of measured value) (nom.) | | | 20 Hz ≤ AF < 1 kHz | ±1 Hz (nom.) | | AF filters | | | | Lowpass | audio decimation | bypass, 1/10, 1/30, 1/100 (nom.) | | De-emphasis | FM demodulation and demodulation bandwidth 200 kHz and 300 kHz | off, 50 μs, 75 μs (nom.) | | AM demodulation ⁴ | | | |------------------------------|------------------|---------------------| | Measurement range | modulation depth | 2 % to 100 % (nom.) | | Modulation depth uncertainty | | ±(4 %) (nom.) | | FM demodulation ⁵ | | | |------------------------------|---------------------|-----------------------------------| | Measurement range | frequency deviation | 10 kHz to 400 kHz (nom.), | | _ | | max. 0.4 · demodulation bandwidth | | Deviation uncertainty | | ±(0.04 · (AF + deviation)) (nom.) | | Modulation distortion ^{3, 4, 5} | | |--|---------------------------| | Measurement functions | THD, SINAD | | Measurement range | -50 dB to 0 dB (THD) | | | 0 dB to 50 dB (SINAD, AM) | | | 0 dB to 40 dB (SINAD, FM) | | Display resolution | 0.1 dB | | Measurement uncertainty | 1 dB (nom.) | | AF frequency range | 20 Hz to 100 kHz (nom.) | ³ Minimum and maximum detectable audio frequency and harmonics depend on the demodulation bandwidth and audio filter settings. ⁴ Modulation frequency 1 kHz sine, AM modulation depth 50 %, carrier level 0 dBm, center frequency = 499 MHz, reference level 6 dBm, demodulation bandwidth = 20 kHz, SNR > 60 dB, audio filter = bypass. Modulation frequency 1 kHz sine, FM deviation = 75 kHz, carrier level 0 dBm, center frequency = 499 MHz, reference level 6 dBm, demodulation bandwidth = 300 kHz, SNR > 60 dB, audio filter = 1/10, deemphasis = off. | Measurement of digital modulation | <u> </u> | | |-----------------------------------|--|--| | Center frequency | R&S®Spectrum Rider FPH model .02 | 10 MHz to 2 GHz | | | with R&S®FPH-B3 option installed | 10 MHz to 3 GHz | | | with R&S®FPH-B3 and R&S®FPH-B4 options installed | 10 MHz to 4 GHz | | | R&S®Spectrum Rider FPH model .06 | 10 MHz to 6 GHz | | | with R&S®FPH-B8 option installed | 10 MHz to 8 GHz | | | R&S®Spectrum Rider FPH model .13 | 10 MHz to 13.6 GHz | | | with R&S®FPH-B20 option installed | 10 MHz to 20 GHz | | | R&S®Spectrum Rider FPH model .26 | 10 MHz to 26.5 GHz | | | with R&S®FPH-B31 option installed | 10 MHz to 31 GHz | | Demodulation bandwidth | | 400 Hz to 2 MHz | | | | auto-set corresponding to signal and demodulation bandwidth requirements | | Display | ASK diagram | eye diagram, symbols, modulation depth, modulation error
| | | ASK numerical results | carrier power, carrier frequency error,
modulation depth and index,
modulation error | | | FSK diagram | eye diagram, symbols, modulation deviation, modulation error | | | FSK numerical results | carrier power, carrier frequency error,
frequency deviation, modulation error,
magnitude error | | Demodulation parameters | | | |-------------------------------------|-----------------|--| | Modulation and demodulation filters | transmit filter | root raised cosine (RRC) | | | | raised cosine (RC) | | | | Gaussian (GAUSS) | | | | unfiltered ⁶ | | | | (measurement and reference filters are | | | | internally adapted to signal parameters) | | Points/symbol | | 4, 8, 16 | | | | internally adapted to signal parameters | | Filter length | | internally adapted to signal parameters | | Demodulation length | | 20 symbols to max. 1000 symbols | | | | (at 4 points/symbol) | | Carrier power | | | |------------------------------------|-------------------------------|--| | Carrier power measurement accuracy | add 0.2 dB, see section | | | | level measurement uncertainty | | | Carrier power range | -30 dBm to +20 dBm (nom.) | | | Display resolution | 0.1 dB | | | ASK demodulation ⁷ | | | |-------------------------------|------------------|-------------------------| | Measurement range | symbol rate | 1 kHz to 100 kHz (nom.) | | | modulation depth | 5 % to 95 % (nom.) | | Modulation depth uncertainty | · | ±(4 %) (nom.) | | Display resolution | | 0.1 % | $^{^{\}rm 6}$ Reference signal is generated with a Gaussian filter, BT = 3. $^{^{7}}$ ASK modulation index 50 %, symbol rate = 100 kHz, Gaussian BT = 1.0, modulation signal PSBS. | FSK demodulation 8 | | | | |--------------------|---------------------|----------------------------|--| | Measurement range | symbol rate | 1 kHz to 100 kHz (nom.) | | | | frequency deviation | 1 kHz to 400 kHz (nom.) | | | | symbol rate | symbol rate | | | | 1 kHz to 20 kHz | 1 ≤ beta ⁹ ≤ 20 | | | | > 20 kHz to 50 kHz | 1 ≤ beta ≤ 8 | | | | > 50 kHz to 100 kHz | 1 ≤ beta ≤ 4 | | | Accuracy | | ± (4 %) (nom.) | | | Display resolution | | 0.1 Hz | | ### R&S®FPH-K19 channel power meter | Frequency range | R&S®Spectrum Rider FPH model .02 | 5 kHz to 2 GHz | |---------------------------------------|-----------------------------------|--| | | with R&S®FPH-B3 option installed | 5 kHz to 3 GHz | | | with R&S®FPH-B3 and R&S®FPH-B4 | 5 kHz to 4 GHz | | | options installed | | | | R&S®Spectrum Rider FPH model .06 | 5 kHz to 6 GHz | | | with R&S®FPH-B8 option installed | 5 kHz to 8 GHz | | | R&S®Spectrum Rider FPH model .13 | 5 kHz to 13.6 GHz | | | with R&S®FPH-B20 option installed | 5 kHz to 20 GHz | | | R&S®Spectrum Rider FPH model .26 | 5 kHz to 26.5 GHz | | | with R&S®FPH-B31 option installed | 5 kHz to 31 GHz | | Channel bandwidth | | 100 kHz to 1 GHz | | Amplitude | | offset, dB relative, zeroing | | Unit | | dBm, W | | Limits | | on/off, upper limit, lower limit, beep on fail | | Measurement range | | -120 dBm to +30 dBm | | Level measurement uncertainty | | | | Absolute level uncertainty at 100 MHz | +20 °C to +30 °C | < 0.3 dB | | Frequency response (+20 °C to +30 °C) | 100 kHz ≤ f < 10 MHz | < 1.5 dB (nom.) | | | 10 MHz ≤ f ≤ 4 GHz | < 1.25 dB | ### R&S®FPH-K29 pulse measurements with power sensor In combination with one of the R&S®NRP-Z81, R&S®NRP-Z85 or R&S®NRP-Z86 power sensors, the R&S®Spectrum Rider FPH supports measurements on pulsed signals. The achievable RF performance is documented in the data sheet specifications of the R&S®NRP-Z81/-Z85/-Z86 power sensors. The list below shows which measurements are supported by the R&S®FPH-K29. | Measurements | R&S®FPH-K29 | |-------------------------|-------------| | Pulse power parameters | • | | Peak power | • | | Pulse top power | • | | Average power | • | | Base power | • | | Minimum power | • | | Positive overshoot | • | | Negative overshoot | • | | Pulse timing parameters | • | | Pulse duration | • | | Pulse period | • | | Pulse start/stop time | • | | Rise/fall time | • | | Duty cycle | | ⁸ FSK modulation deviation 100 kHz, symbol rate = 100 kHz, Gaussian BT = 1.0, modulation signal PRBS. ⁹ Beta is the ratio of frequency deviation to symbol rate. ### R&S®FPH-K43 receiver mode and channel scan measurement application The specifications below apply to the R&S®Spectrum Rider FPH. They are based on the data sheet specifications of the R&S®Spectrum Rider FPH, have not been checked separately and are not verified during instrument calibration. | Measurements | R&S®FPH-K43 | |---------------------------|-------------| | Fixed frequency | | | Frequency scan | • | | Channel scan | | | User defined channel list | | | EMI precompliance | | | CISPR bandwidths | • | | CISPR detectors | • | | Frequency range | | see basic instrument | | |----------------------------|------------------------|--|--| | Measurement modes | | fixed frequency, frequency scan, channel | | | | | scan | | | Frequency scan stepsize | | | | | Scan stepsize | | 100 Hz to max. frequency | | | Maximum number of steps | | 10000 | | | Channel scan | Channel scan | | | | Channel spacing | | user definable | | | Maximum number of channels | | 10000 | | | Resolution bandwidths | -3 dB bandwidths | 1 Hz to 3 MHz in 1/3 sequence | | | | –6 dB CISPR bandwidths | 200 Hz, 9 kHz, 120 kHz, 1 MHz | | | Detectors | | max. peak, average, RMS, quasi-peak | | | Level | | see basic instrument | | ### R&S®FPH-K57 advanced gated trigger measurement The specifications below apply to the R&S®Spectrum Rider FPH. They are based on the data sheet specifications of the R&S®Spectrum Rider FPH, have not been checked separately and are not verified during instrument calibration. Advanced gated trigger measurements are used for analysis of periodic time domain signal measurements and applicable only to the below mentioned measurement modes. | Measurements | R&S [®] FPH-K57 | |---------------------------------------|--------------------------| | Occupied bandwidth (OBW) | • | | Spectrum emission mask (SEM) | • | | Adjacent channel leakage ratio (ACLR) | • | | Frequency range | | see basic instrument | |-----------------------|---|---------------------------------| | Resolution bandwidths | -3 dB bandwidths | 30 KHz to 3 MHz in 1/3 sequence | | Video bandwidths | | 30 KHz to 3 MHz in 1/3 sequence | | Detectors | | see basic instrument | | Auto gate detection | minimum distance, high level to low level | 10 dB | ### R&S®HA-Z350 log-periodic OEM antenna | Frequency range | | 700 MHz to 4 GHz | | |----------------------|------------------------------|--|--| | Gain | | 4 dBi (typ.) | | | Impedance | | 50 Ω | | | VSWR | | < 1:2 (nom.) | | | Connector type | | SMA (f) | | | Dimensions | W×H×D | 340 mm × 200 mm × 25 mm | | | | | $(13.3 \text{ in} \times 7.9 \text{ in} \times 1 \text{ in})$ | | | Weight | | 270 g (0.6 lb) | | | Accessories supplied | hardcase with foam, typical | hardcase with foam, typical calibration data in 10 MHz steps, pistol grip with mini-tripod | | | | function, one set of SMA too | function, one set of SMA toolset | | # R&S®FSH-Z14 directional power sensor ¹⁰ | Frequency range | | 25 MHz to 1 GHz | |--------------------------------|--|-----------------| | Power measurement range | | 30 mW to 300 W | | VSWR referenced to 50 Ω | | < 1.06 | | Power handling capacity | depending on temperature and matching (see diagram on page 15) | 100 W to 1000 W | | Insertion loss | | < 0.06 dB | | Directivity | | > 30 dB | | Average power | | | |------------------------------------|--------------------------------------|--| | Power measurement range | | | | CW, FM, PM, FSK, GMSK | CF: ratio of peak envelope | 30 mW to 300 W | | Modulated signals | power to average power | 30 mW to 300 W/CF | | Measurement uncertainty | | | | 25 MHz to 40 MHz | sine signal | 4.0 % of measured value (0.17 dB) | | 40 MHz to 1 GHz | +18 °C to +28 °C, no zero offset | 3.2 % of measured value (0.14 dB) | | Zero offset | after zeroing | ±4 mW | | Range of typical measurement error | FM, PM, FSK, GMSK | 0 % of measured value (0 dB) | | with modulation | AM (80 %) | ±3 % of measured value (±0.13 dB) | | | two CW carriers with identical power | ±2 % of measured value (±0.09 dB) | | | EDGE, TETRA | ±0.5 % of measured value (±0.02 dB) 11 | | Temperature coefficient | 25 MHz to 40 MHz | 0.40 %/K (0.017 dB/K) | | | 40 MHz to 1 GHz | 0.25 %/K (0.011 dB/K) | | Maximum peak envelope power | | | | |---|--|--|--| | Power measurement range | | | | | Video bandwidths | 4 kHz | 0.4 W to 300 W | | | | 200 kHz | 1 W to 300 W | | | | 600 kHz | 2 W to 300 W | | | Measurement uncertainty | same as for average power plus effect of peak hold circuit | +18 °C to +28 °C | | | Error limits of peak hold circuit for burst signals | duty cycle ≥ 0.1 and repetition rate ≥ 100/s | | | | | video bandwidth 4 kHz | ±(3 % of measured value + 0.05 W) | | | | | starting from a burst width of 200 µs | | | | video bandwidth 200 kHz | ±(3 % of measured value + 0.20 W) | | | | | starting from a burst width of 4 µs | | | | video bandwidth 600 kHz | ±(7 % of measured value + 0.40 W) | | | | | starting from a burst width of 2 µs | | | | 20/s ≤ repetition rate < 100/s | plus ±(1.6 % of measured value + 0.15 W) | | | | 0.001 ≤ duty cycle < 0.1 | plus ±0.10 W | | | Temperature coefficient | 25 MHz to 40 MHz | 0.50 %/K (0.022 dB/K) | | | | 40 MHz to 1 GHz | 0.35 %/K (0.015 dB/K) | | | Load matching | | | |----------------------------
--------------------------------------|---------------| | Matching measurement range | | | | Return loss | | 0 dB to 23 dB | | VSWR | | > 1.15 | | Minimum forward power | specifications complied with ≥ 0.4 W | 0.06 W | | Dimensions and weight | | | | |---|------------------|---|--| | Dimensions (W \times H \times D) 120 mm \times 95 mm \times 39 mm | | | | | | | $(4.72 \text{ in} \times 3.74 \text{ in} \times 1.53 \text{ in})$ | | | | connecting cable | 1.5 m (59 in) | | | Weight | | 0.65 kg (1.43 lb) | | $^{^{\}rm 10}\,$ Requires R&S®FSH-Z144 adapter cable. ¹¹ If standard is selected on the R&S®Spectrum Rider FPH. # R&S®FSH-Z44 directional power sensor ¹² | Frequency range | | 200 MHz to 4 GHz | |--------------------------------|---------------------------------------|------------------| | Power measurement range | | 30 mW to 300 W | | VSWR referenced to 50 Ω | 200 MHz to 3 GHz | < 1.07 | | | 3 GHz to 4 GHz | < 1.12 | | Power handling capacity | depending on temperature and matching | 120 W to 1000 W | | | (see diagram on page 17) | | | Insertion loss | 200 MHz to 1.5 GHz | < 0.06 dB | | | 1.5 GHz to 4 GHz | < 0.09 dB | | Directivity | 200 MHz to 3 GHz | > 30 dB | | | 3 GHz to 4 GHz | > 26 dB | | Average power | | | | |------------------------------------|---|---|--| | Power measurement range | CF: ratio of peak envelope power to average power | | | | | CW, FM, PM, FSK, GMSK | 30 mW to 300 W | | | | LTE, 3GPP WCDMA, cdmaOne, | 30 mW to 120 W | | | | CDMA2000®, DAB, DVB-T | | | | | other modulated signals | 30 mW to 300 W/CF | | | Measurement uncertainty | sine signal, +18 °C to +28 °C, no zero of | ffset | | | | 200 MHz to 300 MHz | 4.0 % of measured value (0.17 dB) | | | | 300 MHz to 4 GHz | 3.2 % of measured value (0.14 dB) | | | Zero offset | after zeroing | ±4 mW | | | Range of typical measurement error | FM, PM, FSK, GMSK | 0 % of measured value (0 dB) | | | with modulation | AM (80 %) | ±3 % of measured value (±0.13 dB) | | | | two CW carriers with identical power | ±2 % of measured value (±0.09 dB) | | | | π/4-DQPSK | ±2 % of measured value (±0.09 dB) | | | | EDGE | ±0.5 % of measured value (±0.02 dB) ¹³ | | | | cdmaOne, DAB | ±1 % of measured value (±0.04 dB) 9 | | | | 3GPP WCDMA, CDMA2000® | ±2 % of measured value (±0.09 dB) 9 | | | | DVB-T | ±2 % of measured value (±0.09 dB) 9 | | | Temperature coefficient | 200 MHz to 300 MHz | 0.40 %/K (0.017 dB/K) | | | | 300 MHz to 4 GHz | 0.25 %/K (0.011 dB/K) | | | Maximum peak envelope power | | | |---|---|---| | Power measurement range | | | | DAB, DVB-T, cdmaOne, CDMA2000®, 3GPP WCDMA | | 4 W to 300 W | | Other signals at video bandwidth | 4 kHz | 0.4 W to 300 W | | | 200 kHz | 1 W to 300 W | | | 4 MHz | 2 W to 300 W | | Measurement uncertainty | +18 °C to +28 °C | same as for average power plus effect of peak hold circuit | | Error limits of peak hold circuit for burst | duty cycle ≥ 0.1 and repetition rate ≥ 100/s | | | signals | video bandwidth 4 kHz | ±(3 % of measured value + 0.05 W) starting from a burst width of 100 μs | | | video bandwidth 200 kHz | ±(3 % of measured value + 0.20 W) starting from a burst width of 4 µs | | | video bandwidth 4 MHz | ±(7 % of measured value + 0.40 W) starting from a burst width of 1 µs | | | 20/s ≤ repetition rate < 100/s | plus ±(1.6 % of measured value + 0.15 W) | | | 0.001 ≤ duty cycle < 0.1 | plus ±0.10 W | | | burst width ≥ 0.5 μs | plus ±5 % of measured value | | | burst width ≥ 0.2 μs | plus ±10 % of measured value | | Range of typical measurement error of | video bandwidth 4 MHz and standard selected on the R&S®FPH4/8/13/20 | | | peak hold circuit | cdmaOne, DAB | ±(5 % of measured value + 0.4 W) | | | DVB-T, CDMA2000®, 3GPP WCDMA | ±(15 % of measured value + 0.4 W) | | Temperature coefficient | 200 MHz to 300 MHz | 0.50 %/K (0.022 dB/K) | | | 300 MHz to 4 GHz | 0.35 %/K (0.015 dB/K) | $^{^{\}rm 12}\,$ Requires R&S®FSH-Z144 adapter cable. ¹³ If standard is selected on the R&S®Spectrum Rider FPH. | Load matching | | | |----------------------------|--------------------------------------|----------------| | Matching measurement range | | | | Return loss | 200 MHz to 3 GHz | 0 dB to +23 dB | | VSWR | 3 GHz to 4 GHz | 0 dB to +20 dB | | VSWR | 200 MHz to 3 GHz | > 1.15 | | | 3 GHz to 4 GHz | > 1.22 | | Minimum forward power | specifications complied with ≥ 0.2 W | 0.03 W | | Dimensions and weight | | | |------------------------|------------------|---| | Dimensions (W x H x D) | | 120 mm × 95 mm × 39 mm | | | | $(4.72 \text{ in} \times 3.74 \text{ in} \times 1.53 \text{ in})$ | | | connecting cable | 1.5 m (59 in) | | Weight | • | 0.65 kg (1.43 lb) | # **Ordering information** | Designation | Туре | Order No. | | |---|------------------------|--------------|--| | Handheld spectrum analyzer, 5 kHz to 2 GHz | R&S®Spectrum Rider FPH | 1321.1111.02 | | | Handheld spectrum analyzer, 5 kHz to 6 GHz | R&S®Spectrum Rider FPH | 1321.1111.06 | | | Handheld spectrum analyzer, 5 kHz to 13.6 GHz | R&S®Spectrum Rider FPH | 1321.1111.13 | | | Handheld spectrum analyzer, 5 kHz to 26.5 GHz | R&S®Spectrum Rider FPH | 1321.1111.26 | | | Accessories supplied | | | | | Lithium-ion battery pack, USB cable, AC power supply with country specific adapters for EU, GB, US, AUS, CH, documentation, quick start guide, side strap | | | | ### **Options** | Designation | Туре | Order No. | |---|--------------|--------------| | Spectrum analyzer frequency upgrade, 2 GHz to 3 GHz ¹⁴ | R&S®FPH-B3 | 1321.0667.02 | | Spectrum analyzer frequency upgrade, 3 GHz to 4 GHz ¹⁴ | R&S®FPH-B4 | 1321.0673.02 | | (requires R&S®FPH-B3) | | | | Spectrum analyzer frequency upgrade, 6 GHz to 8 GHz ¹⁵ | R&S®FPH-B8 | 1321.0767.02 | | Spectrum analyzer frequency upgrade, 13.6 GHz to 20 GHz ¹⁶ | R&S®FPH-B20 | 1321.0773.02 | | Spectrum analyzer frequency upgrade, 26.5 GHz to 31 GHz ^{17, 18} | R&S®FPH-B31 | 1321.0780.02 | | Spectrum analyzer preamplifier, 5 kHz to 4 GHz 10 | R&S®FPH-B22 | 1321.0680.02 | | Spectrum analyzer preamplifier, 5 kHz to 8 GHz 11 | R&S®FPH-B23 | 1321.0867.02 | | Spectrum analyzer preamplifier, 5 kHz to 20 GHz 12 | R&S®FPH-B24 | 1321.0850.02 | | Spectrum analyzer preamplifier, 5 kHz to 31 GHz 13 | R&S®FPH-B25 | 1321.0873.02 | | Type N RF input connector for model .26 (factory installed) 14 | R&S®FPH-B100 | 1321.0596.02 | | Spectrum analyzer 100 Hz frequency extension, | R&S®FPH-B29 | 1334.8532.02 | | from 5 kHz down to 100 Hz 19 | | | | Analog modulation analysis AM, FM, ASK, FSK | R&S®FPH-K7 | 1321.0696.02 | | Power sensor support | R&S®FPH-K9 | 1321.0709.02 | | Interference analysis | R&S®FPH-K15 | 1321.0715.02 | | Signal strength mapping | R&S®FPH-K16 | 1321.0615.02 | | Channel power meter | R&S®FPH-K19 | 1321.0721.02 | | Pulse measurements with power sensor | R&S®FPH-K29 | 1321.0738.02 | | Receiver mode and channel scanner | R&S®FPH-K43 | 1321.0621.02 | | Advanced gated trigger measurements | R&S®FPH-K57 | 1321.1586.02 | ### **Extras** 18 | Designation | Туре | Order No. | |--|-------------|--------------| | Battery charger for R&S®HA-Z306 ²⁰ | R&S®HA-Z303 | 1321.1328.02 | | Lithium-ion battery pack, 6.4 Ah | R&S®HA-Z306 | 1321.1334.02 | | Spare power supply, incl. mains plug for EU, GB, US, AUS, CH | R&S®HA-Z301 | 1321.1386.02 | | Car adapter | R&S®HA-Z302 | 1321.1340.02 | | Carrying holster | R&S®HA-Z322 | 1321.1370.02 | | Rainproof carrying holster | R&S®HA-Z322 | 1321.1370.03 | | Soft carrying bag | R&S®HA-Z220 | 1309.6175.00 | | Hardcase | R&S®HA-Z321 | 1321.1357.02 | | Hard shell protective carrying case | R&S®RTH-Z4 | 1326.2774.02 | | Headphones | R&S®FSH-Z36 | 1145.5838.02 | | Spare USB cable | R&S®HA-Z211 | 1309.6169.00 | | Spare Ethernet cable | R&S®HA-Z210 | 1309.6152.00 | ¹⁴ Applicable only to base unit with order no. 1321.1111.02. ¹⁵ Applicable only to base unit with order no. 1321.1111.06. $^{^{\}rm 16}$ Applicable only to base unit with order no. 1321.1111.13. Applicable only to base unit with order no. 1321.1111.26. $^{^{\}rm 18}$ R&S°FPH-B31 option is not available in combination with R&S°FPH-B100 option. $^{^{19}}$ For serial number \geq 103100. Not applicable to R&S $^{\!0}$ Spectrum Rider FPH model .02. ²⁰ The battery charger is dedicated for charging an additional battery outside the instrument. The battery can be charged via the instrument as well. ### **Antennas and antenna accessories** | Designation | Туре | Order No. | |---|-----------------|---------------| | Yagi antenna, 1710 MHz to 1990 MHz | R&S®HA-Z1900 | 1328.6825.02 | | Yagi antenna, 824 MHz to 960 MHz | R&S®HA-Z900 | 1328.6283.02 | | RF cable (length: 1 m), DC to 6 GHz, type N (m) – type N (m) connectors | R&S®HA-Z901 | 3626.2757.02 | | Carrying bag, for R&S®HA-Z900 or R&S®HA-Z1900 Yagi antenna | R&S®HA-Z902 | 1328.6883.02 | | Handheld directional antenna (antenna handle) | R&S®HE400BC | 4104.6000.04 | | Cable set for R&S®HE400BC | R&S®HE400-KB | 4104.7770.04 | | Handheld directional antenna (antenna handle) | R&S®HE400 | 4104.6000.02 | | Handheld directional microwave antenna (antenna handle) | R&S®HE400MW | 4104.6000.03 | | Cable set for R&S®HE400 and R&S®HE400MW (requires R&S®HE300USB | | 4104.7770.02 | | HF antenna module, 8.3
kHz to 30 MHz | R&S®HE400HF | 4104.8002.02 | | VHF antenna module, 20 MHz to 200 MHz | R&S®HE400VHF | 4104.8202.02 | | UWB antenna module, 30 MHz to 6 GHz | R&S®HE400UWB | 4104.6900.02 | | Log-periodic antenna module, 450 MHz to 8 GHz | R&S®HE400LP | 4104.8402.02 | | Cellular antenna module, 700 MHz to 2500 MHz | R&S®HE400CEL | 4104.7306.02 | | S band and C band antenna module, 1.7 GHz to 6 GHz | R&S®HE400SCB | 4104.7606.02 | | SHF antenna module, 5 GHz to 20 GHz (with R&S®HE400BC and | R&S®HE400SHF | 4104.8602.02 | | R&S®HE400MW antenna handle) | | | | USB adapter, for R&S®HE400 handheld directional antenna | R&S®HE300USB | 4080.9440.02 | | Log-periodic OEM antenna, 700 MHz to 4 GHz | R&S®HA-Z350 | 1321.1405.02 | | RF cable (length: 1 m), DC to 8 GHz, armored, | R&S®FSH-Z320 | 1309.6600.00 | | type N (m) – type N (f) connectors | | | | RF cable (length: 3 m), DC to 8 GHz, armored, | R&S®FSH-Z321 | 1309.6617.00 | | type N (m) – type N (f) connectors | | | | GPS receiver for R&S®Spectrum Rider FPH | R&S®HA-Z340 | 1321.1392.02 | | Portable EMF measurement system, hard case | R&S®TS-EMF | 1158.9295.05 | | Isotropic antenna, 30 MHz to 3 GHz for R&S®TS-EMF | R&S®TSEMF-B1 | 1074.5719.02 | | Isotropic antenna, 700 MHz to 6 GHz for R&S®TS-EMF | R&S®TSEMF-B2 | 1074.5702.02 | | Isotropic antenna, 9 kHz to 200 MHz for R&S®TS-EMF | R&S®TSEMF-B3 | 1074.5690.02 | | Converter cable | R&S®TSEMF-CV | 1158.9250.02 | | Matching pad, 50/75 Ω, L section | R&S®RAM | 0358.5414.02 | | Matching pad, 50/75 Ω , series resistor 25 Ω | R&S®RAZ | 0358.5714.02 | | Matching pad, 50/75 Ω, L section, type N – BNC | R&S®FSH-Z38 | 1300.7740.02 | | Adapter type N (m) – BNC (f) | | 0118.2812.00 | | Adapter type N (m) – type N (m) | | 0092.6581.00 | | Adapter type N (m) – SMA (f) | | 4012.5837.00 | | Adapter type N (m) – 7/16 (f) | | 3530.6646.00 | | Adapter type N (m) – 7/16 (m) | | 3530.6630.00 | | Adapter type N (m) – FME (f) | | 4048.9790.00 | | Adapter BNC (m) – banana (f) | | 0017.6742.00 | | Attenuator, 50 W, 20 dB, 50 Ω, DC to 6 GHz, type N (f) – type N (m) | R&S®RDL50 | 1035.1700.52 | | Attenuator, 100 W, 20 dB, 50 Ω, DC to 2 GHz, type N (f) – type N (m) | R&S®RBU100 | 1073.8495.20 | | Attenuator, 100 W, 30 dB, 50 Ω, DC to 2 GHz, type N (f) – type N (m) | R&S®RBU100 | 1073.8495.30 | | Compact probe set for E and H near-field measurements, | R&S®HZ-15 | 1147.2736.02 | | 30 MHz to 3 GHz | 11000 112 10 | | | Near-field probe set H field | R&S®HZ-17 | 1339.4141.02 | | Preamplifier (3 GHz, 20 dB), power adapter (100 V to 230 V), | R&S®HZ-16 | 1147.2720.02 | | for R&S®HZ-15 | 1.00 1.2 10 | 1111.2720.02 | | Omnidirectional antenna for circular right-hand polarization, | R&S®AC004R1 | 0749.3000.03 | | 18 GHz to 26.5 GHz | 1100 71000 1111 | 01 10.0000.00 | | Omnidirectional antenna for circular left-hand polarization, | R&S®AC004L1 | 4078.4000.02 | | 18 GHz to 26.5 GHz | 1100 71000 121 | 10.01.000.02 | | Omnidirectional antenna for circular right-hand polarization, | R&S®AC004R2 | 0749.3251.03 | | 26.5 GHz to 40 GHz | | 5. 15.0251.00 | | Omnidirectional antenna for circular left-hand polarization, | R&S®AC004L2 | 4078.5006.02 | | 26.5 GHz to 40 GHz | | | | Broadband omnidirectional antenna, 800 MHz to 26.5 GHz | R&S®HF907OM | 4070.3279.02 | | Standard gain horn antenna, 26 GHz to 40 GHz, mid band gain 20 dB, | R&S®FH-SG-40 | 3629.2393.02 | | WR 28 | 1.00 50 10 | 3323.2303.02 | | Standard gain horn antenna adapter | R&S®HA-Z370 | 1334.8432.02 | | Mast and tripod adapter | R&S®KM011Z8 | 4090.4006.02 | | Wooden tripod | R&S®HZ-1 | 0837.2310.02 | | wooden input | INCO TIZ-I | 0031.2310.02 | | Designation | Туре | Order No. | |--|-------------|--------------| | Test port cable, 0 Hz to 26.5 GHz | R&S®ZV-Z93 | 1301.7595.25 | | 3.5 mm (f) to 3.5 mm (m), length: 635 mm | | | | Test port cable, 0 Hz to 26.5 GHz | R&S®ZV-Z93 | 1301.7595.38 | | 3.5 mm (f) to 3.5 mm (m), length: 965 mm | | | | Test port cable, 0 Hz to 26.5 GHz | R&S®ZV-Z193 | 1306.4520.24 | | 3.5 mm (f) to 3.5 mm (m), length: 610 mm | | | | Test port cable, 0 Hz to 26.5 GHz | R&S®ZV-Z193 | 1306.4520.36 | | 3.5 mm (f) to 3.5 mm (m), length: 914 mm | | | | Test port cable, 0 Hz to 26.5 GHz | R&S®ZV-Z193 | 1306.4520.60 | | 3.5 mm (f) to 3.5 mm (m), length: 1524 mm | | | | Test port cable, 0 Hz to 40 GHz | R&S®ZV-Z95 | 1301.7608.25 | | 2.92 mm (f) to 2.92 mm (m), length: 635 mm | | | | Test port cable, 0 Hz to 40 GHz | R&S®ZV-Z95 | 1301.7608.38 | | 2.92 mm (f) to 2.92 mm (m), length: 965 mm | | | | Test port cable, 0 Hz to 40 GHz | R&S®ZV-Z195 | 1306.4536.24 | | 2.92 mm (f) to 2.92 mm (m), length: 610 mm | | | | Test port cable, 0 Hz to 40 GHz | R&S®ZV-Z195 | 1306.4536.36 | | 2.92 mm (f) to 2.92 mm (m), length: 914 mm | | | ### R&S®NRP-Zxx power sensors supported by the R&S®Spectrum Rider FPH ²¹ | Designation | Туре | Order No. | |---|------------------------|------------------| | Directional power sensor, 25 MHz to 1 GHz | R&S®FSH-Z14 | 1120.6001.02 | | Directional power sensor, 200 MHz to 4 GHz | R&S®FSH-Z44 | 1165.2305.02 | | Universal power sensor, 10 MHz to 8 GHz, 100 mW, two-path | R&S®NRP-Z211 | 1417.0409.02 | | Universal power sensor, 10 MHz to 18 GHz, 100 mW, two-path | R&S®NRP-Z221 | 1417.0309.02 | | Wideband power sensor, 50 MHz to 18 GHz, 100 mW | R&S®NRP-Z81 | 1137.9009.02 | | Wideband power sensor, 50 MHz to 40 GHz, 100 mW (2.92 mm) | R&S®NRP-Z85 | 1411.7501.02 | | Wideband power sensor, 50 MHz to 40 GHz, 100 mW (2.40 mm) | R&S®NRP-Z86 | 1417.0109.40 | | Wideband power sensor, 50 MHz to 44 GHz, 100 mW (2.40 mm) | R&S®NRP-Z86 | 1417.0109.44 | | Three-path diode power sensor, 100 pW to 200 mW, 10 MHz to 8 GHz | R&S®NRP8S | 1419.0006.02 | | Three-path diode power sensor, 100 pW to 200 mW, 10 MHz to 18 GHz | R&S®NRP18S | 1419.0029.02 | | Three-path diode power sensor, 100 pW to 200 mW, 10 MHz to 33 GHz | R&S®NRP33S | 1419.0064.02 | | Three-path diode power sensor, 100 pW to 200 mW, 10 MHz to 40 GHz | R&S®NRP40S | 1419.0041.02 | | Three-path diode power sensor, 100 pW to 200 mW, 10 MHz to 50 GHz | R&S®NRP50S | 1419.0087.02 | | Thermal power sensor, 300 nW to 100 mW, DC to 18 GHz | R&S®NRP18T | 1424.6115.02 | | Thermal power sensor, 300 nW to 100 mW, DC to 33 GHz | R&S®NRP33T | 1424.6138.02 | | Thermal power sensor, 300 nW to 100 mW, DC to 40 GHz | R&S®NRP40T | 1424.6150.02 | | Thermal power sensor, 300 nW to 100 mW, DC to 50 GHz | R&S®NRP50T | 1424.6173.02 | | Thermal power sensor, 300 nW to 100 mW, DC to 67 GHz | R&S®NRP67T | 1424.6196.02 | | Thermal power sensor, 300 nW to 100 mW, DC to 110 GHz | R&S®NRP110T | 1424.6215.02 | | Average power sensor, 100 pW to 200 mW, 8 kHz to 6 GHz | R&S®NRP6A | 1424.6796.02 | | Average power sensor, 100 pW to 200 mW, 8 kHz to 18 GHz | R&S®NRP18A | 1424.6815.02 | | R&S®NRP-Zxx power sensors require the following adapter cable for op | eration on the R&S®Spo | ectrum Rider FPH | | USB adapter cable for R&S®FSH-Z14/ R&S®FSH-Z44 power sensors | R&S®FSH-Z144 | 1145.5909.02 | | USB adapter cable (passive), length: 2 m, to connect R&S®NRP-Zxx S/SN | R&S®NRP-Z4 | 1146.8001.02 | | power sensors to the R&S®Spectrum Rider FPH | | | | R&S®NRP power sensors require the following adapter cable for operat | ion on the R&S®Spectru | ım Rider FPH | | USB interface cable, length: 1.5 m, to connect R&S®NRP sensors to the | R&S®NRP-ZKU | 1419.0658.03 | | R&S®Spectrum Rider FPH | | | # Optical power sensors and accessories | Designation | Туре | Order No. | |---|-------------|--------------| | OEM USB optical power meter (Germanium) | R&S®HA-Z360 | 1334.5162.00 | | OEM USB optical power meter (filtered InGaAs) | R&S®HA-Z361 | 1334.5179.00 | | SC adapter for optical power meter | R&S®HA-Z362 | 1334.5185.00 | | LC adapter for optical power meter | R&S®HA-Z363 | 1334.5191.00 | | 2.5 mm universal adapter for optical power meter | R&S®HA-Z364 | 1334.5204.00 | | 1.25 mm universal adapter for optical power meter | R&S®HA-Z365 | 1334.5210.00 | | Patch cord SC-LC SM, SX, length: 1 m | R&S®HA-Z366 | 1334.5227.00 | | Patch cord SC-SC SM, SX, length: 1 m | R&S®HA-Z367 | 1334.5233.00 | ²¹ For average power measurements only. ### Service options | Warranty | | | |---|---------|-----------------------| | Base unit | | 3 years | | All other items ²² | | 1 year | | Options | | | | Extended warranty, one year | R&S®WE1 | Please contact your | | Extended warranty, two years | R&S®WE2 | local Rohde & Schwarz | | Extended warranty with calibration coverage, one year | R&S®CW1 | sales office. | | Extended warranty with calibration coverage, two years | R&S®CW2 | | | Extended warranty with accredited calibration coverage, one year | R&S®AW1 | | | Extended warranty with accredited calibration coverage, two years | R&S®AW2 | | #### Extended warranty with a term of one and two years (WE1 and WE2) Repairs carried out during the contract term are free of charge ²³. Necessary calibration and adjustments carried out during repairs are also covered. #### Extended warranty with calibration coverage (CW1 and CW2) Enhance your extended warranty by adding calibration coverage at a package price. This package ensures that your Rohde & Schwarz product is regularly calibrated, inspected and maintained during the term of the contract. It includes all repairs ²³ and calibration at the recommended intervals as well as any calibration carried out during repairs or option upgrades. #### Extended warranty with accredited calibration (AW1 and AW2) Enhance your extended warranty by adding accredited calibration coverage at a package price. This package ensures that your Rohde & Schwarz product is regularly calibrated under accreditation, inspected and maintained during the term of the contract. It includes all repairs ²³ and accredited calibration at the recommended intervals as well
as any accredited calibration carried out during repairs or option upgrades. CDMA2000® is a registered trademark of the Telecommunications Industry Association (TIA-USA). ²² For options that are installed, the remaining base unit warranty applies if longer than 1 year. Exception: all batteries have a 1 year warranty. ²³ Excluding defects caused by incorrect operation or handling and force majeure. Wear-and-tear parts are not included. Version 10.00, December 2020 #### Service that adds value - ➤ Worldwide - Local and personalized Customized and flexible Uncompromising quality Long-term dependability #### Rohde & Schwarz The Rohde & Schwarz electronics group offers innovative solutions in the following business fields: test and measurement, broadcast and media, secure communications, cybersecurity, monitoring and network testing. Founded more than 80 years ago, the independent company which is headquartered in Munich, Germany, has an extensive sales and service network with locations in more than 70 countries. www.rohde-schwarz.com #### Sustainable product design - ► Environmental compatibility and eco-footprint - ► Energy efficiency and low emissions - ► Longevity and optimized total cost of ownership Certified Quality Management ISO 9001 Certified Environmental Management ISO 14001 #### Rohde & Schwarz training www.training.rohde-schwarz.com #### Rohde & Schwarz customer support www.rohde-schwarz.com/support Data without tolerance limits is not binding | Subject to change © 2015 - 2020 Rohde&Schwarz GmbH&Co. KG | 81671 Munich, Germany